Processing math: 26%

2014年7月24日 星期四

[數論] 網格點 (Lattice Point)

參考資料
張文忠,基礎數論:原理及題解,中央圖書,2002年出版,ISBN:978-957-637-493
LattE, A Short Lecture Series on Lattice Points https://www.math.ucdavis.edu/~latte/background.php
How to count lattice points on a line. http://math.stackexchange.com/questions/628117/how-to-count-lattice-points-on-a-line
Problem to Ponder: March 16, 2011 http://www.nctm.org/about/content.aspx?id=29768
#7: The Visible Grid Point Problem http://epicmath.org/2013/02/12/7-the-visible-grid-point-problem/

圖片來源 NCTM http://www.nctm.org

平面座標 x,y 都是整數的點稱為網格點(Lattice point)或整點(Integral point)。若 xy 互質,則稱該網格點為 reduced integral point。我們主要討論下面兩個問題:
一、一條線會通過多少網格點?
二、一個區域包含多少網格點?


一、一條線會通過多少網格點?
圖一

從圖一可以看出,綠色線段((a,b)(c,d)) 只有兩個端點是網格點;藍色線段((a,b)(e,f))則有三個網格點。不失一般性,我們以 (a,b)(c,d) 線段做說明。

證明:給定兩點 (a,b)(c,d) 連成直線,此直線上會有 gcd(ca,db)+1 個網格點。
<pf>
先寫出直線方程式為 yb=(dbca)(xa)。因為等號左邊 yb 是整數,所以等號右邊的 (dbca)(xa) 也須為整數。

我們令 k=gcd(ca,db),則 ca=kαdb=kβ。則 (dbca)(xa) 可改寫成 βα(xa)βα(xa)Zα(xa)。而 axc,亦即 0(xa)(ca)=kα,滿足此不等式的整數有 k+1 個(解集合為 {0,1,2,,k}),因此證明了直線上會有 gcd(ca,db)+1 個網格點。

二、一個區域包含多少網格點?
這裡的「區域」有很多種類型:三角形、方形、多邊形、圓形等等。有興趣者可自行上網搜尋相關資料。

2014年7月9日 星期三

[數論] 形數(Figurate Number) 與級數

參考資料
張文忠,基礎數論:原理及題解,中央圖書,2002年出版,ISBN:978-957-637-493
Wikipedia http://en.wikipedia.org/wiki/Figurate_number
Wolfram MathWorld http://mathworld.wolfram.com/FigurateNumber.html


這是一篇與圖形息息相關的文章。

三角形數
參考:昌爸工作坊 http://www.mathland.idv.tw/fun/triangle.htm

第一層1個點、第二層2個點、第三層3個點,,可知第n層會有n個點。
數列 t1=1t2=1+2t3=1+2+3tn=1+2+3++n=n(n+1)2

正方形數
第一層1個點、第二層3個點、第三層5個點,,可知第n層會有2n1個點。
數列 s1=1s2=22=4s3=32=9sn=n2

推廣至正多邊形數
對於正 k 邊形而言,每多一層,會增加 k 邊的範圍。扣除最旁邊的兩個邊,每多一層增加的點會坐落在其他 k2 的邊上。

如果只看這 k2 個邊的其中一邊,第 n 層時,這條邊上會有 n 個點。如果直接算第 n 層有 (k2)n 個點的話,那麼就會多算,因為邊上的端點(也就是頂點)會被重複計算。扣掉重複計算的部分才是真正的數目,重複計算的端點有 (k2)1=k3 個,也就是有效邊數(k2)減1,因此n 層有 (k2)n(k3) 個點

計算形數的和
對於正 k 邊形,如何計算 t1+t2++tn 的和?
根據上面的結論,相當於計算 p_n(k)=\sum_{i=1}^{n}\left [ (k-2)i+(k-3) \right ]=\frac{n[n(k-2)-k+4]}{2}=\binom{k+n-1}{n}

77. 試證:兩個相鄰的三角形數之和是一個平方數。

<sol> 設兩三角形數為 t_n=\frac{n(n+1)}{2}t_{n+1}=\frac{n+1(n+2)}{2}。則

t_n+t_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{1}{2}\left [ (n^2+n)+(n^2+3n+2) \right ]=\frac{1}{2}\left [ 2n^2+4n+2 \right ]=(n+1)^2.

78. 試求前 n 個四邊形數(即平方數)的和。
<sol> 可參考此網頁:https://proofwiki.org/wiki/Sum_of_Sequence_of_Squares,裡面提供了五種證明。個人比較喜歡 Proof 4,下面稍微介紹一下,欲見完整證明請點網頁連結。
上圖是 1^2+2^2+3^2+4^2 的圖示。如果以行的角度來看,可看作 \sum_{k=1}^{4}k^2=\sum_{k=1}^{4}k+\sum_{k=2}^{4}k+\sum_{k=3}^{4}k+\sum_{k=4}^{4}k.

若推廣至 n 層,亦即 1^2+2^2+3^2+\cdots +n^2,仿照上式,我們可以寫出

\sum_{k=1}^{n}k^2=\sum_{k=1}^{n}k+\sum_{k=2}^{n}k+\sum_{k=3}^{n}k+\cdots +\sum_{k=n}^{n}k=\sum_{k=1}^{n}\left ( \sum_{j=k}^{n}j \right ).

78-1. 試求S_n=1\cdot 2+2\cdot 3+3\cdot 4+\cdots +n(n+1)
<sol> S_n=\frac{1}{2}\left ( 1\cdot 2+2\cdot 3+\cdots +(n-1)n \right )
              =1\cdot (1+1)+2\cdot (2+1)+3\cdot (3+1)+\cdots +n\cdot (n+1)
              =(1^2+1)+(2^2+2)+(3^2+3)+\cdots +(n^2+n)
              =(1^2+2^2+3^2+\cdots +n^2)+(1+2+3+\cdots +n)
              =\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}
              =\frac{n(n+1)(n+2)}{3}.

79. 試求前 n 個三角形數的和。 圖解:http://www.mathland.idv.tw/fun/seriesadd.htm
81. 設 p_n(k) 為第 nk 邊形數,試證:p_n(k)=p_n(k-1)+p_{n-1}(3)
<sol> p_n(k-1)+p_{n-1}(3)=[(k-3)n-(k-4)]+[(3-2)(n-1)-(3-3)]
                                          =(k-3)n-k+4+n-1=(k-2)n-(k-3)
                                          =p_n(k).

82. 試證:任何三角形數的個位數字不會是 2,4,7,9
<sol> 第 n 個三角形數 =\frac{n(n+1)}{2}。依序取 n=0,1,2,\cdots ,9 代入觀察後即得所求。

83. 試證:(1) 任何四邊形數的個位數不會是 2,3,7,8。 (2) 任何平方數的最後兩位數字之積必為偶數。
85. 試求如下平方數的和:(1) 1^2-2^2+3^2-4^2+\cdots +(-1)^{n+1}n^2;(2)1^2+3^2+5^2+\cdots +(2m+1)^2
<sol>
(1) 當 n 是偶數時,令 n=2m
    1^2-2^2+\cdots +(n-1)^2-n^2=[1^2+3^3+\cdots +(n-1)^2]-[2^2+4^2+\cdots +n^2]
                                                     =\sum_{i=1}^{m}(2m-1)^2-\sum_{i=1}^{m}(2m)^2
                                                     =\sum_{i=1}^{m}[(2m-1)^2-(2m)^2]
                                                     =\sum_{i=1}^{m}(-4m+1)
                                                     =-4\cdot \frac{m(m+1)}{2}+m
                                                     =-4\cdot \frac{n(n+1)}{2}  (since m=\frac{n}{2})

     當 n 是奇數時,令 n=2m+1,所求之和為 -4\cdot \frac{n(n+1)}{2}+(2m+1)^2=\frac{n(n+1)}{2}

     故 1^2-2^2+3^2-4^2+\cdots +(-1)^{n+1}n^2=(-1)^{n+1}\cdot \frac{n(n+1)}{2}

86. 試證:1^2+4^2+7^2+\cdots +(3m+1)^2=\frac{(m+1)(6m^2+9m+2)}{2}

2014年7月1日 星期二

[書籍] 104 Number Theory Problems: From the Training of the USA IMO Team

Titu Andreescu, Dorin Andrica, Zuming Feng(2007), 104 Number Theory Problems: From the Training of the USA IMO Team
http://www.amazon.com/104-Number-Theory-Problems-Training/dp/0817645276


Example 1.10. [HMMT 2002]
Find n such that 2\parallel 3^{1024}-1.

Theorem 1.3b.
For any given integer m, there is no polynomial p(x) with integer coefficients such that p(n) is prime for all integers n with n>m.

Example 1.12.
Compute gcd(2002+2,2002^{2}+2,2002^{3}+2,\cdots ).

Corollary 1.10.
Let p be a prime, and let k be an integer with 1\leq k<p. Then p\mid \binom{p}{k}.

Example 1.15. [Russia 2001]
Let a and b be distinct positive integers such that ab(a+b) is divisible by a^{2}+ab+b^2. Prove that \left | a-b \right |>\sqrt[3]{ab}.

Example 1.16. [AIME 1988]
Compute the probability that a randomly chosen positive divisor of 10^{99} is an integer multiple of 10^{88}.

Example 1.17.
Determine the number of ordered pairs of positive integers (a, b) such that the least common multiple of a and b is 2^{3}5^{7}11^{13}.

Example 1.18.
Determine the product of distinct positive integer divisors of n = 420^4.

Corollary 1.15.
For any positive integer n, \prod_{d\mid n}^{\; }d=n^{\frac{\tau (n)}{2}}.

The Number of Divisors \tau (n)=\sum_{d\mid n}^{\; }1, The Sum of Divisors \sigma (n)=\sum_{d\mid n}^{\; }d.
Corollary 1.16.
For any positive integer n, \tau (n)\leq 2\sqrt{n}.

Example 1.19.
Find the sum of even positive divisors of 10000.

Example 1.21. [Russia 2001]
Find all primes p and q such that p + q =(p − q)^{3}.

Example 1.22. [Baltic 2001]
Let a be an odd integer. Prove that a^{2^n} + 2^{2^n} and a^{2^m} + 2^{2^m} are relatively prime for all positive integers n and m with n\neq m.

Example 1.23.
Determine whether there exist infinitely many even positive integers k such that for every prime p the number p^2 + k is composite.

Residue Classes
Example 1.25. [Romania 2003]
Consider the prime numbers n_1 < n_2 < \cdots <n_{31}. Prove that if 30 divides n_{1}^{4}+n_{2}^{4}+\cdots +n_{31}^{4}, then among these numbers one can find three consecutive primes.

Example 1.26.
Let m be an even positive integer. Assume that \left \{ a_{1},a_{2},\cdots ,a_{m} \right \} and \left \{ b_{1},b_{2},\cdots ,b_{m} \right \} are two complete sets of residue classes modulo m. Prove that \left \{ a_{1}+b_{1},a_{2}+b_{2},\cdots ,a_{m}+b_{m} \right \} is not a complete set of residue classes.

Theorem 1.26. [Wilson’s Theorem]
For any prime p, (p-1)!\equiv -1\; (\mathbf{mod}\; p).

Fermat’s Little Theorem and Euler’s Theorem
Example 1.30.
Let p\geq 7 be a prime. Prove that the number  \underset{p-1\; \mathbf{1's}}{\underbrace{11\cdots 1}} is divisible by p.

Example 1.31.
Let p be a prime with p > 5. Prove that p^{8}\equiv 1\; (\mathbf{mod}\; 240).

Example 1.32.
Prove that for any even positive integer n, n^2−1 divides 2^{n!}−1.

Example 1.33. [IMO 2005]
Consider the sequence a_1, a_2,\cdots defined by a_{n}=2^{n}+3^{n}+6^{n}-1 for all positive integers n. Determine all positive integers that are relatively prime to every term of the sequence.

Example 1.35. [IMO 2003 shortlist]
Determine the smallest positive integer k such that there exist integers x_1, x_2,\cdots , x_k with x_{1}^{3}+x_{2}^{3}+\cdots +x_{k}^{3}=2002^{2002}.

Example 1.36. [AIME 2001]
How many positive integer multiples of 1001 can be expressed in the form 10^j −10^i , where i and j are integers and 0\leq i\leq j\leq 99?

Euler’s Totient Function
Theorem 1.34. [Gauss]
For any positive integer n, \sum_{d\mid n}^{\; }\phi (d)=n.

Example 1.37.
Let n be a positive integer.
(1) Find the sum of all positive integers less than n and relatively prime to n.
(2) Find the sum of all positive integers less than 2n and relatively prime to n.

Linear Diophantine Equations
Example 1.39.
Let n be a positive integer. Suppose that there are 666 ordered triples (x, y, z) of positive integers satisfying the equation x+8y+8z=n. Find the maximum value of n.

Numerical Systems
Example 1.41. [AHSME 1973]
In the following equation, each of the letters represents uniquely a different digit in base ten: (YM)\cdot (ME)=TTT. Determine the sum E + M + T + Y.

Example 1.42. [AIME 2001]
Find the sum of all positive two-digit integers that are divisible by each of their digits.

Example 1.43. [AMC12A 2002]
Some sets of prime numbers, such as {7, 83, 421, 659}, use each of the nine nonzero digits exactly once. What is the smallest possible sum such a set of primes can have?

Example 1.48.
Determine all positive integers n such that 11111_{(n)} is a perfect square.

Divisibility Criteria in the Decimal System
Example 1.50. Perfect squares or not?
(1) Determine all positive integers k such that the k-digit number 11\cdots 1 is not a perfect square.
(2) Can a 5-digit number consisting only of distinct even digits be a perfect square?
(3) Determine whether \underset{2004}{\underbrace{20\cdots 04}} is a perfect square.

Example 1.52.
Determine the number of five-digit positive integers \overline{abcde}(a, b, c, d, and e not necessarily distinct) such that the sum of the three-digit
number \overline{abc} and the two-digit number \overline{de} is divisible by 11.

Example 1.53. [USAMO 2003]
S(n) denote the sum of its digits. Prove that for every positive integer n there exists an n-digit number divisible by 5^n all of whose digits are odd.

Example 1.54. [Russia 1999]
In the decimal expansion of n, each digit (except the first digit) is greater than the digit to its left. What is S(9n)?

Example 1.55. [Ireland 1996]
Find a positive integer n such that S(n) =1996S(3n).

Example 1.56. 
Determine whether there is any perfect square that ends in 10 distinct digits.

Example 1.57. [IMO 1976]
When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B.

Floor Function
Example 1.60. [ARML 2003]
Find the positive integer n such that \frac{1}{n} is closest to \left \{ \sqrt{123456789} \right \}.

Example 1.61 [AIME 1997]
Suppose that a is positive, {a^{−1}} = {a^2}, and 2 < a^2 < 3. Find the value of a^{12} − 144a^{−1}.

Example 1.62. 
Find all real solutions to the equation 4x^2-40\left \lfloor x \right \rfloor+51=0.

以上節錄了一些題目,有興趣的可以自行練習。